總覽
專為小動物模型成像而設(shè)計,集成氣體麻醉和溫度控制以及高靈敏度sCMOS相機的緊湊型結(jié)構(gòu),460-1320nm波長范圍內(nèi)獲取共配準(zhǔn)熒光和光聲信號,獲取高分辨率深層組織3D圖像。每次掃描可以使用多個激發(fā)波長,多模態(tài)系統(tǒng)可以同時獲取大體積(30-60 cm3)的光聲和熒光數(shù)據(jù),可以在感興趣的區(qū)域內(nèi)進行光譜分析。除了 3D 分子圖譜外,TriTom 還可以對體內(nèi)生理參數(shù)進行空間解析評估,例如體積血含量和氧合情況,而無需造影劑。TriTom 還為 460 nm 至 1320 nm 激發(fā)的多種熒光團和其他類型的分子探針提供定量成像。憑借如此多功能的成像能力,TriTom 系統(tǒng)非常適合廣泛的臨床前應(yīng)用,包括腫瘤、毒理學(xué)、發(fā)育生物學(xué)、組織工程和再生、神經(jīng)科學(xué)、心血管成像,以及藥物、療法和光學(xué)和熒光成像探針的開發(fā)。
產(chǎn)品特征
集成了3D 光聲和熒光斷層掃描技術(shù)的緊湊型臺式設(shè)計
大體積(30-60 cm3)快速成像掃描(<36 秒),具有出色的分子靈敏度
以高空間分辨率(高達(dá) 150 µm)對解剖、功能和分子體積進行精確的 3D 配準(zhǔn)
可在整個光譜范圍內(nèi)調(diào)節(jié)光學(xué)激發(fā)波長,可在一次掃描中實現(xiàn)多種波長
高靈敏度 sCMOS 熒光相機,配備標(biāo)準(zhǔn)發(fā)射濾光片,可覆蓋常用的熒光探針
集成氣體麻醉管線和可調(diào)節(jié)小鼠支架,操作方便,可重復(fù)進行體內(nèi)縱向研究
單次掃描評估多個微樣本(50 µL 或更少體積),加速造影劑開發(fā),避免浪費
用戶友好的集成軟件,旨在限度地縮短實驗時間,并在幾秒鐘內(nèi)重建大規(guī)模體積
開放數(shù)據(jù)格式,允許使用第三方軟件進行圖像重建和數(shù)據(jù)管理
參考文獻(xiàn)
I. B. Belyaev et al., "Laser-Synthesized Germanium Nanoparticles as Biodearadable Material for Near.Infrared Photoacoustic lmaging and Cancer Phototherapy," AdvSci 2307060, 2024, doi: 10.1002/advs.202307060.
R. M. Cam, C. Wang, w. Thompson, S. A. Ermilov, M. A. Anastasio, and u. Villa, "Spatiotemporal lmageReconstruction to Enable High-Frame Rate Dynamic Photoacoustic Tomography with Rotating-Gantry Volumetric lmagers," ArXiv, 2023, doi: 10.48550/arXiv.2310.00529.
K. Huda, D. J. Lawrence, w. Thompson, S. H. Lindsey, and C. L. Bayer, "in vivo noninvasive systemicmyography of acute systemic vasoactivity in female pregnant mice," Nature Communications, vol14,,2023,doi: 10.1038/s41467-023-42041-8.
V. D. Vincely and C. L. Bayer, "Functional photoacoustic imaging for placental monitoring: A minireview," lEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 1-1, 2023, doi.10.1109/tuffc.2023.3263361.
W. R. Thompson et al., "Characterizing a photoacoustic and fluorescence imaging platform forpreclinical murine longitudinal studies," 1. Biomed. Opt, vol. 28, no. 3, p. 036001, 2023, doi:10.1117/1.JBO.28.3.036001.
M. Delcroix, A. Reddy Marri, S. Parant, P. C. Gros, and M. Bouché, "Water-soluble Fe(l) complexes fortheranostic application: Synthesis, photoacoustic imaging and photothermal conversion," Eur. ..Inorg.Chem,, vol.26, no.27,2023, doi: 10.1002/eiic.202300138.
S. Singh et al., "Size-tunable lCG-based contrast agent platform for targeted near-infraredphotoacoustic imaging," Photoacoustics, vol. 29, p.100437, 2023, doi: 10.1016/i.pacs.2022.100437
Z. Zhao, c. B. Swartchick, and J. Chan, "Targeted contrast agents and activatable probes forphotoacoustic imaging of cancer," Chem Soc Rev, vol. 5l, no.3, pp. 829-868, 2022, doi.10.1039/d0cs00771d.
J. Kim, A. M. Yu, K. P. Kubelick, and S. Y. Emelianov, "Gold nanoparticles conjugated with DNAaptamer for photoacoustic detection of human matrix metalloproteinase-9," Photoacoustics, vol. 25p.100307, 2022, doi: 10.1016/i.pacs.2021.100307.
M. R. Chetyrkina et al., "Carbon Nanotube Microscale Fiber Grid as an Advanced Calibration Systemfor Multispectral Optoacoustic lmaging," Acs Photonics, vol. 9, 0, pp. 3429-3439, 2022, doi:10.1021/acsphotonics.2c01074.
M. D. Mokrousov et al, "indocyanine green dye based bimodal contrast agent tested byphotoacoustic/fluorescence tomography setup," Biomed. Opt. Express, vol. 12, no. 6, p. 3181, 2021, doi.10.1364/boe.419461.
A. Juronis and M. Jasinskas, "Breakthrough instruments and products PhotoSonus M+ laser forphotoacoustic imaging," Review of Scientific instruments, vol. 92, no. 5, p. 059502, 2021, doi.10.1063/5.0053559.
K. Huda, c. wu, J. G. Sider, and c. L, Baver, "Spherical-view photoacoustic tomography for monitoringin vivo placental function," Photoacoustics, vol. 20,p.100209, 2020, doi: 10.1016/i.pacs.2020.100209
E. M. Donnelly, K. P. Kubelick, D.s. Dumani, and S. Y. Emelianov, "Photoacoustic lmage-GuidedDelivery of Plasmonic-Nanoparticle-Labeled Mesenchymal Stem Cells to the Spinal Cord," NanoLetters, vol.18, 0, pp.6625-6632,2018, doi: 10.1021/acs.nanolett.8b03305